Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology.
نویسندگان
چکیده
An Mn for Cu substitution on cellular prion proteins (PrP(c)) in the brain that results in biochemical changes to PrP(c) has been implicated in the pathogenesis of transmissible spongiform encephalopathies. Recent research in the mature bovine does not support this theory. The present study tested this hypothesis by using progeny from gestating cows receiving Cu-deficient diets or Cu-deficient diets coupled with high dietary Mn. Copper-adequate cows (n = 39) were assigned randomly to 1 of 3 treatments: 1) control (adequate in Cu and Mn), 2) Cu deficient (-Cu), or 3) Cu deficient plus high dietary Mn (-Cu+Mn). Cows assigned to treatments -Cu and -Cu+Mn received no supplemental Cu and were supplemented with Mo to further induce Cu deficiency. The -Cu+Mn treatment also received 500 mg of supplemental Mn/kg of dietary DM. Calves were weaned at 180 d and maintained on the same treatments as their respective dams for 260 d. Copper-deficient calves (-Cu and -Cu+Mn) had decreased (P = 0.001) brain (obex) Cu and tended to have increased (P = 0.09) obex Mn relative to control calves. Obex Mn:Cu ratios were substantially increased (P < 0.001) in calves receiving -Cu and -Cu+Mn treatments compared with control calves and were greater (P < 0.001) in -Cu+Mn calves than in -Cu calves. Obex prion protein characteristics, including proteinase K degradability, superoxide dismutase (SOD)-like activity, and glycoform distributions, were largely unaffected. Obex tissue antioxidant capacity was not compromised by perturbations in brain metals, but Cu-deficient calves tended to have decreased (P = 0.06) Cu:Zn SOD activity and increased (P = 0.06) Mn SOD activity. Although obex Cu was decreased because of Cu deficiency and Mn increased because of exposure to high dietary Mn, the obex metal imbalance had minimal effects on PrP(c) functional characteristics in the calves.
منابع مشابه
Chicken prion tandem repeats form a stable, protease-resistant domain.
Prion-linked diseases, such as mad cow disease, scrapie, and the human genetic disorder Creutzfeldt-Jakob disease, are fatal neurodegenerative diseases correlated with changes in the secondary structure of neural prion protein. We expressed recombinant chicken prion protein in Escherichia coli and purified the protein to homogeneity. Circular dichroism spectra of the 26 kDa recombinant protein ...
متن کاملSeparation of native prion protein (PrP) glycoforms by copper-binding using immobilized metal affinity chromatography (IMAC).
The conformational conversion of the normal cellular prion protein (PrPC) into the pathology-associated PrPSc isoform is a key event in TSEs (transmissible spongiform encephalopathies). The host PrPC molecule contains two N-linked glycosylation sites and binds copper under physiological conditions. In contrast with PrPC, PrPSc is insoluble in non-ionic detergents and does not bind to Cu2+ ions....
متن کاملPolymorphism of Prion Protein Gene (PRNP) in Iranian Holstein and Two Local Cattle Populations (Golpayegani and Sistani) of Iran
Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease in cattle, characterized by the accumulation of an abnormal, proteaseresistant prion protein (PrPSc) in the brain. BSE is similar to scrapie in sheep and goats and Creuzfeldt-Jakob disease in humans. Susceptibility in cattle hasbeen shown to be under the influence of two polymorphic locations, which are...
متن کاملEffect of iron supplements on serum copper status in pregnant women in Islamshahr
Introduction: Iron deficiency anemia is recognized as the most prevalent nutrient deficiency in the world and iron supplements, which are prescribed daily in pregnant women for prevention of this anemia, may have unfavorable effects on copper absorption. The purpose of this study was to determine the effects of iron supplementation on serum copper status of pregnant women. Materials and Methods...
متن کاملLow Copper and High Manganese Levels in Prion Protein Plaques
Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 86 11 شماره
صفحات -
تاریخ انتشار 2008